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Pendellb'sung Effects as a Tool for Examining Minute Strains with a Triple-Crystal X-ray 
Spectrometer 
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Plane-wave Pendellb'sung effects are shown to be effective and very sensitive for analyzing minute strains in 
silicon crystals with dimensions normally used for practical applications. In a triple-crystal silicon X-ray 
spectrometer with an angular beam divergence of less than 0.1" the Pendell6sung effect is very pronounced 
for sample thicknesses up to 1.2 mm. Strain fields are shown for silicon crystals implanted with 60 keV 
phosphorus ions for doses down to 10 ~3 ion cm -2 and the limit of resolution is one order of magnitude less. 

Introduction 

The Pendell6sung effect which refers to the inter- 
ference between two coherent wave fields in a crystal 
was first observed for X-rays by Kato & Lang (1959) 
in the transmission case. In most of the succeeding 
papers concerning this Pendelliisung effect the topo- 
graphical picture of Pendellffsung fringes is due to the 
spherical properties of the X-ray wave field. As shown 
by Kato (1961) a spherical wave excites such a great 
portion of the dispersion surfaces, that wave fields from 
the (~ and fl branches having parallel Poynting vectors 
are created simultaneously (e.g. points A and A' in 
Fig. 1). Beating of these waves will produce topo- 
graphical Pendell6sung fringes in the transmission case 
for wedge-shaped crystals. 

If a highly collimated X-ray beam is used, the wave 
field becomes almost planar, and only a small region of 
the dispersion surfaces will be excited (around A and B 
in Fig. 1). Although the Poynting vectors have different 
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Fig. 1. Dispersion surface for one polarization state. The wave 
fields from tiepoints A and A' will interfere for spherical waves, 
and those from A and B for plane waves. 

directions these two fields may interfere over a 
considerable volume if the beam is not too narrowly 
defined by collimator slits. This constitutes the plane- 
wave interference effect as predicted by Ewald. It has 
later been verified by several authors, as intensity 
variations in the rocking curve from thin crystals and 
as topographical fringes in wedge-shaped crystals by 
Malgrange & Authier (1965), Kohra & Kikuta (1968) 
and Lefeld-Sosnowska & Malgrange (1968). 

I n  the present paper it is shown that when a crystal 
collimated beam with sufficiently small angular 
divergence is used together with a critical adjustment of 
the sample crystal the PendelI6sung effect may become 
so significant that both intensity variations and fringes 
are observable in crystals of normal thickness and with 
plane parallel surfaces. As the fringe pattern is very 
sensitive to strains the method described may become 
useful for analysing strains in otherwise perfect 
crystals. 

Experimental technique 

The principle of the experimental set-up is shown in 
Fig. 2. The X-ray beam is collimated in two asymmetri- 
cally cut silicon crystals, CI and CII. All of the 
experiments have been carried out with Mo Ka 1 
radiation from a 1 kW X-ray tube with point focus of 
0.4 × 0.4 mm, and only 220 reflections have been 
investigated. Each collimator has an asymmetry factor 
b = 0.1 (b = sin tp~/sin ~02, where (~1 and ~02 are the 
angles of incidence of the incoming and diffracted 
beams respectively). The divergence of the beam is 
0.07". The collimators are adjusted such that the Ka 2 
beam does not intersect the reflecting surface of CII. In 
order to obtain Pendelldsung fringe topographs no 
Soller slits were used for diminishing the vertical 
divergence of the beam. Hence the height of the beam is 
only limited by CII and the distance to the sample 
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crystal S. In most of the experiments the beam height 
was 20 mm and the width was 8 mm. Full beam size 
has also been used for measuring the rocking curves. 
The results indicate a high perfection of the crystal. The 
rocking curves were continuously recorded with a 
scintillation counter connected to an X - Y  recorder; 
scanning through the rocking curve was by rotation of 
the sample goniometer by means of a piezoelectric 

crystal. The topographs were recorded on Kodak 
lndustrex C films. Typical exposure times were 20 min. 

All silicon crystals to be analysed were dislocation 
and swirl free. They were cut perpendicular to the 
(1 11) direction, so that symmetric Laue diffraction 
could be used. The crystals were subsequently etched 
or polished on both sides. 

CI S 

- ] S c 2  
KO'2 CZI Film 

Fig. 2. Triple-crystal spectrometer.  CI and CII are asymmetrically 
cut collimator crystals. CII  is turned so that  the Kt~ 2 beam does 
not hit the polished surface. 
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Fig. 3. Rocking curve for a 520 lam thick etched silicon crystal. 220 

reflection for the Laue case. (a) Diffracted beam. (b) Transmit ted 
beam. 

Perfect crystals 

Figs. 3 and 4 show examples of rocking curves for 
strain-free perfect crystals. Fig. 3(a) is characterized by 
a very large dip in the middle of the rocking curve, 
because most of the energy is transferred to the forward 
diffracted beam, which is shown in Fig. 3(b). A 
corresponding peak is seen here. In Fig. 4 the peaks are 
not so big, but the number is remarkable. Peaks are 
visible well outside the diffraction region normally 
considered. 

The positions of the peaks are in good agreement 
with the dynamical theory of X-ray diffraction. In the 
formulae to be derived below the notation is rather 
close to the one used in the review article by Batterman 
& Cole (1964). The energy flow inside the crystal 
oscillates between the K o and K H directions as 
c o s ( 2 z r Z / L ) ,  where Z is the depth in the crystal and 
L = 1/(K~,, -- K ~ )  is the P e n d e l l 6 s u n g  length. For L 
we get the equation 

1 
- = k l P l ( 1 / c o s  O) E F H ( r l  2 + 1) 1/2 = D0(r/2 + 1) 1/2, 
L 

where P is the polarization factor (P = 1 and I cos 201 
for the cr and 7r polarizations), F =  r e . 2 2 / ~ V ,  where r e is 
the classical electron radius and V is the volume of the 
unit cell. F H is the structure factor for the h k l  reflection 
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Fig. 4. Rocking curve for a 240/am thick double polished silicon 
crystal (crystal  B). 220 reflection for the Laue case, diffracted 
beam. 
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including the Debye-Wal ler  factor, 1/is a normalized 
angle such that the half-maximum value of the rocking 
curve is obtained for r/ = +1. For symmetric Laue 
diffraction r/ = AO sin 20/(FI P I Fn) where AO is the 
deviation from the exact Bragg angle. D o is the 
diameter of the dispersion hyperbola. For the 220 
reflection in silicon we have 1/Doo = 36.8 lam and 
1~Dot = 39.5 ~tm for the tr and n polarizations. 

The most pronounced Pendelldsung effect for an 
unpolarized incident X-ray beam will be seen if the 
crystal has a thickness so that the difference between 
the number of Pendell6"sung lengths for the a and n 
polarizations is an integer for r / - -  0. For the present 
experimental conditions this is obtained for crystal 
thicknesses = N x 550 lam. This is in good agreement 
with the experiments. Fig. 3 shows the diffracted and 
transmitted rocking curves for a 520 ~tm thick crystal. 
The numbers of Pendell6sung lengths Z/D are 14.1 
and 13.2 for the o and n polarizations respectively, so 
that the difference is close to one. For r / =  0 we would 
expect most of the energy to be transferred to the 
transmitted beam as the Z/D values are so close to 
being integers. This is clearly seen to be the case. 

In Fig. 4 the diffracted rocking curve is shown for a 
240 lam thick crystal, hereafter called crystal B. Here 
the number of Pendell6sung lengths for r / =  0 are 6.5 
and 6.1 respectively. Consequently the two polarized 
waves counteract each other for r /--  0 and we would 
expect a minimal Pendell6sung effect. Obviously the 
dip in the rocking curve for r /=  0 is small as compared 
to that in Fig. 3, but even in this case the Pendell6sung 
effect is considerable. In actual fact the effect will 
always be visible because a strict cancellation of the 
two fields will only take place for one specific 1/value. 
The peak intensity variation with crystal thicknesses 
agrees well with the results of Hart & Lang (1965). 

In order to analyse further the interference pattern 
we look at the expression for the energy flow within the 
crystal. If we neglect absorption we have for one 
polarization state (Batterman & Cole, equation 50) 

S T ~_ {a21E~I 2(e-2V' So + bs n) + ,~:/21E/ol 2(e2v So + bs n) 

+ a21Eiol 2(s o - bSH) cos(2xZD), (1) 

where a = ½ cosh -~ v and sinh v = r/. s o and sn are unit 
vectors in the K 0 and K n directions respectively, and E L 
is the electric field of the incoming wave. 

For the symmetric Laue case the intensity in the 
diffracted direction may thus be written 

SH ,~ a21E/012 (1 -- cos 2nZD). 

As the tr and z~ fields are perpendicular to each other we 
may simply add the intensities so that we get the 
following expression for the rocking curve 

' ' I  ] 
I o 4(r/2 + 1) 1 cos(2zcV/-~ + 1 DooZ ) 

1 [ l + 4(r/'2 + I) 1 --cos(2nv/r/ '2 + 1 Do,,Z) . (2) 

! 
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(b) 
Fig. 5. Calculated rocking curve for crystal B. (a) Plane-wave 

approximation. (b) Angular divergence = 0-3". 
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As we may write r/' = r//cos 20 and Do, ' = Do, ' cos 20 it 
is seen that for large r/values the two intensity terms 
are always oscillating in phase. This may also be seen 
geometrically from Fig. 2 as the dispersion surfaces for 
both tr and zr polarized waves approach the same 
asymptotes for large r/values. On the other hand, the 
form of the rocking curve for small r/values is very 
sensitive to the thickness of the crystal. Fig. 5 shows the 
rocking curve calculated for the data of crystal B. 
The agreement with Fig. 4 is well within the experimen- 
tal error. The positions of the peaks for the two curves 
are shown in Table 1. For large r/values the distance 
between the peaks approaches a constant which is 0.16 
for the calculated curve and 0.18 for the experimental 
one. This difference is probably due to the difficulty in 
measuring the maximum and half-width values of Fig. 
4. A reduction of the experimental values by 6% thus 
gives a much better agreement with calculation. The 
influence of crystal thickness is illustrated by the third 
column in Table 1. The peaks are here calculated for a 
2% reduction of the Z value. 

Table 1. Position in 11 scale of experimental and 
calculated peaks in the rocking curve of crystal B 

Theoretical 
Experimental Theoretical (crystalthickness x0.98) 

0.30 0.22 0.30 
0.64 0.61 0.65 
0.90 0.87 0.90 
1.11 1.08 1.12 
1.31 1.28 1.32 
1.50 1.47 1.51 
1.70 1.65 1.69 
1.87 1.82 1.87 
2.05 2.00 2.05 
2.22 2.16 2.22 
2.40 2.33 2.38 
2.59 2.50 2.55 
2.74 2.66 2.72 
2.92 2.82 2.89 
3.11 2.98 3.05 
3.29 3.14 3.21 
3.46 3.30 3.38 
3.62 3.46 3.54 
3.82 3.62 3.70 

In order to get an idea of how critical the beam 
collimation is, a simple calculation has been carried out 
where a part of the dispersion surface corresponding to 
a given angular divergence is assumed to be excited. 
The fields from 50 plane waves evenly distributed 
within this region have been summed. For an angular 
divergence of 0.07" corresponding to the actual 
experimental case no change in the rocking curve was 
observed. With the divergence increased to 0.15" 
practically the same number of peaks were visible but 
the peak height was approximately 30% smaller. Fig. 
5(b) shows the rocking curve for an angular divergence 
of 0.30". Here only the first few peaks will be visible 
above the background. 

From equation (2) it is seen that a thicker crystal or 
a more uneven crystal surface is equivalent to an 
increased beam divergence. This is in agreement with 
Fig. 3, as this crystal was thicker and the surfaces were 
only etched whereas crystal B was polished optically 
flat on both sides. The calculated divergence depen- 
dence is also in agreement with another experiment 
where only one collimator crystal was used. The 
angular divergence was 0.7" and no Pendell6sung 
effect at all was observed. 

Strain analysis 

Because of the strong local intensity variations of the 
rocking curve the Pendell6sung effect may be used as a 
tool for examining strains in crystals. If we use a perfect 
crystal with plane parallel surfaces as a sample and 
adjust it properly in the triple-crystal spectrometer so 
that the tilting angle /3 (,8 = the angle between th~ 
diffracting Bragg planes of the sample and the 
diffracting Bragg planes of the collimator crystals) is 
zero we will get a homogeneously exposed topograph, 
i.e. all parts of the crystal will be in the same condition 
of diffraction. However, if/3 differs from zero the Bragg 
condition is not fulfilled all over the sample but only in 
a horizontal band, the width of which depends on /3 
(Renninger, 1963). Introducing the horizontal plane 
through the focus o f  the X-ray tube as our zero plane 
and considering a segment of the beam, we define ~p as 
the angle of the beam with the horizontal plane. If the 
sample crystal exactly fulfills the Bragg condition in the 
zero plane, the deviation AO9 from the exact Bragg 
angle for other horizontal planes is given by 

AO~ ~ fl sin ~0. (3) 

As sin ~p is proportional to the height on the sample (or 
film) from the zero plane, we will depict the rocking 
curve on the film if fl 4= 0. Fig. 6 shows examples of this 
for crystal B. fl is approximately 0.8'  and 3' respec- 
tively. The small curvature of the bands is probably due 
to bending or thickness variations of the crystal. The 
strain sensitivity of the topograph is inversely propor- 
tional to ft. The typical distance between the peaks in 
Fig. 4 and thus between the fringes in Fig. 6 
corresponds to a change in the Bragg angle of 0.25". 
The broad band in the topographs corresponding to r/ 
"-~ 0 can be displaced vertically by turning the crystal 
through the Bragg angle so that full sensitivity may be 
obtained where desired. From equation (3) it is found 
that for the present experimental conditions (height of 
the beam = 20 mm and distance from X-ray tube = 
500mm) the Pendell6sung peaks in Fig. 4 will 
disappear for/3 values greater than approximately 10". 

Some preliminary experiments have been carried out 
on ion-implanted samples with the aim of testing the 
applicability of the method. The samples were approxi- 
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(a) (b) 
Fig. 6. Transmission topography of crystal B. (a) Crystal tilted 0-8'. 

(b) Crystal tilted 3'. 

mately 250 tam thick and polished on both surfaces, like 
crystal B. They were all implanted with 60keV 
phosphorus ions at room temperature. In Fig. 7 are 
shown topographs of a sample implanted with 1013 
ion cm -z through a 10 x 10 mm hole with an arbitrary 
orientation of the edges. Outside the implanted area the 
fringe pattern consists of straight horizontal lines like 
the ones in Fig. 6, so the crystal is unstrained in this 
region (within the sensitivity of the method). Inside the 
implanted area the fringes are straight equidistant tilted 
lines, so that the strain field is homogeneous here. The 
horizontal distance between the fringes corresponds to 
the angular deviation as found from the rocking curve 
in Fig. 4. As the tilting angle fl is decreased, the distance 
between the fringes increases and thus their slope will 
increase within the implanted region because their 
horizontal distance is unchanged. This effect is shown 
in Fig. 7(c), where fl is diminished to approximately l ' .  
From this result it may be concluded that strain fields 
from implanted doses down to 10 ~z ion c m  -2 fo r  these 
low-energy ions may readily be observed. For fl = 0 a 
slight change in intensity was observed within the 
implanted spot but no fringes were observed. With this 
dose the strain field is so small that the peaks are still 
significant in the rocking curve. 

> ' "  . " • . . " . . ~ , .  

(a) (b) (c) 

Fig. 7. Transmission topography of 250 ~m thick silicon crystal implanted with 60 keV phosphorus ions through a 10 x 10 mm hole. 
Dose -- 10 t~ ion cm -2. (a) Crystal tilted 2', diffracted beam. (b) Crystal tilted 2', transmitted beam. (c) Crystal tilted 0.8', diffracted beam. 
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For higher ion concentrations the fringe pattern 
changes radically owing to the increased strains in the 
crystal. Now the Pendell~sung fringes are seen even for 
fl = 0 because of the greater curvature of the crystal. 
Fig. 8 shows such topographs for an i o n  dose of 
1.1 × 10 ~5 ion cm -2 implanted through a 6 mm circular 
hole. The fringes now become straight vertical lines 
inside the implanted region. The pattern is equal to that 
of Fig. 6 except for a 90 ° rotation. This indicates that 
the strain field in this region is homogeneous. In this 
case the fringe pattern inside the implanted area is 
practically independent of fl, and again the distance 
between the  fringes, as measured along a horizontal 
line, is a direct measure of the curvature and hence also 
of the strain in the crystal. Outside the implanted spot 
where the strain field is weaker it can be separated into 
horizontal and vertical components by measuring the 
vertical and horizontal distances between the fringes. 
Two topographs are shown for different Bragg angles, 
q = 0.35 in Fig. 8(a) and q = - 1  in Fig. 8(b). 

The Pendell6sung pattern is rather similar to the 
moir6 pattern obtainable by the interferometer method 
(Bonse & Hart, 1965; Gerward, 1973) and the 
possibility of examining strain fields is by and large the 
same for the two methods. However, as compared to 
the interferometer method the technique described here 
has the advantage of a much simpler sample 
preparation. 
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(u) (b) 

Fig. 8. Transmission topography of 250 ~tm thick silicon crystal 
implanted with 60 keV phosphorus ions through a 6 mm hole. 
Dose = 1.1 × 10 ~5 ion cm -2. (a) Crystal rotated, zl0 ~_ 0.5".  
(b) Crystal rotated, zJÜ --~ - 1.3". 

It may be noted for instance that the Pendellffsung 
pattern depends on the strain field in quite a different 
way from that of the interferometer. Variations in the 
lattice constant and in the angle of the diffracting 
planes are directly separable in the moir6 pattern, 
whereas they influence the Pendell6sung pattern in a 
similar way. However, as variations in the lattice 
constant are insensitive to the sign of the Bragg angle, 
the two effects may be separated by comparing 220 
and 220 reflections. A more detailed analysis of the 
strain field will be given later. 

Conclusions 

It has been shown that by using an X-ray beam 
collimated by two asymmetrically cut crystals plane- 
wave fields are obtained which may interfere in such a 
manner that Pendell6sung effects are observed. The 
positions of the peaks in the experimental rocking curves 
are in good agreement with the positions calculated 
using the dynamical theory of diffraction for plane X- 
ray waves. The peaks are significant for crystal thick- 
nesses up to more than 1 mm for practically un- 
polarized X-rays. The topographical method described 
has been used for visualizing strains in samples 
implanted with 60 keV phosphorus ions. Weak strain 
fields may be determined as deviations from a horizon- 
tal fringe pattern when the crystal is tilted, and the 
sensitivity may be adjusted through the tilting angle. 
Strain fields may be determined for ion doses down to 
1012 ion cm -2. 
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